この現象は、電子が「粒子」でありながら「波」の性質も持っていることを示しており、一つの電子が複数の経路を同時に通るという直観に反する挙動をとることを示しています。

(※この実験セットに限定すると、干渉パターンは量子的現象が起きたことを示す証拠にとして機能します)

さらに量子力学では、「ある状態」と「別の状態」が同時に存在する重ね合わせ(superposition)と呼ばれる概念が登場します。

たとえば電子のスピン(方向感覚のようなもの)が「上向き」と「下向き」の両方を同時にとり得る――それが重ね合わせです。

ただし、私たちが観測(測定)を行うと、結果は「上向きか下向きのどちらか一方」に定まる、というのが量子力学の実験的事実です。観測前は「複数の可能性を同時に抱えている」状態で、観測後はどこか一つに落ち着いてしまう。このプロセスが量子力学独特の世界観を生み出します。

シュレーディンガーの猫のパラドックスはこの重ね合わせの不思議を象徴する思考実験としてしばしば取り上げられています。

物理学者エルヴィン・シュレディンガーは、次のような装置を考えました。

『放射性物質があり、それが崩壊するかどうかは量子的な確率で決まるとし、もし崩壊が起こると、それを検知する機構が作動して毒ガスを放出し、箱の中の猫は死んでしまう。崩壊が起こらなければ毒ガスは出ず、猫は生存したまま』

量子力学の立場に立つと、放射性物質は「崩壊した状態」と「崩壊していない状態」の重ね合わせになり得ます。となれば、その結果に連動している猫も「生きている」と「死んでいる」の重ね合わせで存在しているはずです。

ところが、箱を開けて観測(測定)した瞬間には、猫は生きているか死んでいるかのどちらかに定まる。いったい、この“定まる”というプロセスはどう理解したらよいのでしょうか?

これこそが量子力学の「測定問題」であり、のちに多世界解釈が登場する大きなキッカケの一つとなります。

測定問題の核心