ボールを際限なく投げ続ければ、選手からエネルギーが失われ続け、やがて疲れて倒れてしまうでしょう。
しかし野球場を含む空間全体から見た場合、野球選手が失ったエネルギーは飛んでいくボールや、そのボールが命中した壁に移っただけであり、空間全体の持つエネルギーの総和は保たれたままとなります。
あるいは走っている車がブレーキをかけると、車の速度は減少して運動量がなくなります。
この場合、車は野球選手の例ように外部の何かにエネルギーを出力しているわけではないので、車の失った運動量がどうなったかは視覚的にはよくわかりません。
しかし減速していく過程で、車の運動エネルギーは完全に消えるわけではなく、ブレーキパッドやディスク、タイヤなどの摩擦によって熱エネルギー(さらに音や摩耗の形で微小なエネルギー)に変換されているのです。
急ブレーキを踏んだ車が甲高い音を立てるのも、運動エネルギーが音エネルギーに変換されている証拠と言えるでしょう。
このようにエネルギーや運動量は形を変えて移り変わっても、その総和は変らないというのが保存則になります。
保存則は物理学の最重要の柱とも言われ、実験的にも無数の検証が積み重ねられてきました。
量子力学でも、シュレディンガー方程式にハミルトニアン(エネルギー演算子)を定義すれば、閉じた系ではエネルギーが保存されることが示されます。
しかし、実際には“測定”という操作が、演算子の固有状態へと波動関数を“突然”写し替えてしまう(射影測定)というコペンハーゲン的解釈のステップがあるため、「あれ、保存則が破れているのでは?」と思える場面が出てきます。
たとえば、ある粒子の運動量を測定するとき、測定の前は「運動量がいろいろな値の重ね合わせ」だったかもしれません。
ですが測定によって「1つの値」に定まるなら、その前後で“見かけ上”運動量が変化したように見えます。
もちろん、装置が粒子と相互作用することで運動量がやり取りされる、と考えれば説明は可能です。