そんな中、1990年代に行ったある実験結果がヒントを与えてくれました。
その実験では、ごく弱い方法で「どちらのスリットを通ったか」を観測しても光の干渉縞が消える現象が確認され、「なぜ粒子にほとんど擾乱を与えない観測でも干渉が崩れるのか?」という謎が残っていました。
今回の理論はまさにこの点を説明してくれます。
すなわち、観測装置を入れることで本来ダーク状態にあった光子がブライト状態へと遷移し、その結果粒子は従来なら現れないはずの場所に現れる(検出される)ため縞模様が洗い流されてしまうというわけです。
こうした洞察が得られたことで、研究者たちは「古典的な干渉(波の現象)に対する量子的な描像(粒子の現象)を提供できたことに大きな意義がある」と述べています。
この新理論は現在理論的提案の段階ですが、今後の発展にも期待が寄せられています。
例えば、この枠組みを実際の実験で検証することが考えられます。
ダーク状態にある光子は本当に検出されずに存在しているのか、より感度の高い検出器や工夫を凝らしたセットアップで確かめることができるかもしれません。
また光子以外の物質粒子(電子や原子など)でも同様の明暗状態が考えられるのか、検討する価値があるでしょう。
研究者たちも「今回は光の粒子(フォトン)を二準位原子で観測する場合を研究したが、例えば電子など物質粒子をイオン化検出器やスクリーンで観測する場合にも同じ考え方が応用できるか興味がある」と述べています。
さらに、この量子的描像を深めることで、光と物質の相互作用の理解が進み、量子情報技術などへの応用につながる可能性もあります。
歴史ある二重スリット実験に対し、粒子の視点から新たなストーリーを与えてくれた今回の研究。
教科書の定番図である干渉縞が、実はフォトンたちの「明暗のかくれんぼ」として描き直されるかもしれない――そんなワクワクするような想像力をかき立てる成果と言えるでしょう。