認識した欠陥や修正案の妥当性評価:コード生成AIツールは、欠陥の認識を誤ったり、誤ったコードを提案したりすることがある。

組織の状況の理解の限界:コード生成AIツールはコードについて大量のソースから学習し多くの知識を備えているが、特定の組織の具体的なプロジェクトの状況についての知識を備えていない。

複雑な要件への対応:コード生成AIツールは、まだ複雑なプロンプトに対する応答に不足がみられることがある。

そのほか、いまのコード生成AIツールは、大きなシステムの概要設計全体など、大きな文脈の理解に不足があるという指摘もある。これを背景に、Magicの1億トークンモデルなど、大きな文脈の理解に対する開発努力が進められている状況だ。

上述のような課題もあるが、今日のコード生成ツールでもタスクを最大2倍の速さで完了でき、保守作業など労働集約的な開発作業から高価な技術者を解放することで、企業経営に実益をもたらしている。

マッキンゼーの同記事では、生成AIツールを導入して生産性を最大化し、リスクを最小化するためには、生成AIのトレーニングとコーチング、ユースケースの選択、従業員のスキルアップ、リスク管理を含む構造化されたアプローチを採用する必要があると述べられている。

(文・五条むい)