なぜ不良在庫化するのか

前述した全商品のたった20%から利益の8割が生まれているという話からも分かるように、利益を生み出していない残り80%の在庫が不良在庫化していると言えます。

なぜそんなに不良在庫化するのかというと、「需要予測」というところに大きな問題があります。アパレル小売業を例に出すと、半年先に販売する商品を今企画しているようなイメージです。

コストを抑えるため海外でまとまった数を生産する必要があり、そのために海外の工場へ早期に発注し完成したら輸入するというような流れです。このように、一般的には半年先の需要を読む予測を行っています。

しかし、半年先のトレンドや天気は当然分かりません。

現在の科学技術では、AIを用いても遠い未来のことは予測できないのです。これは、「予測した後に起きる変化は予測に反映しようがない」というのが理由なのですが、本記事のメインテーマではないため詳細は割愛します。

話を戻すと、アパレル小売業の現場では、商品を企画する段階では何が売れるか分からないため、少しでも売れる確率を上げるために商品の種類(すなわち品番数)を増やすことになります。

品番を増やす(取り扱うカテゴリを広げ商品数を増やす)ことを、「在庫を横に持つ」という言い方をします。しかし在庫を横に持った品番の中でも、どの品番がよく売れるか分からないので、品番あたりの在庫数を多くして欠品を極力避けようとするのです。

これを「在庫を縦に持つ」と言います。つまり、在庫を横に持つと、自ずと縦にも持たざるを得なくなり、在庫量が掛け算式に増えてしまうということです。

このように、用意した在庫の中から利益を生み出す20%の在庫が生まれ、残りの80%の在庫は利益を生み出せず売れ残ってしまうのです。

当たるわけもない半年先の需要を予測して利益を生み出そうと考えていることが、在庫過多の業務フロー上の最大の原因だと言えるでしょう。

ところで、実際は商品を売り始めないと、どの商品が売れるかは分かりませんよね。そのため売れ始めてからのデータを分析して、計画と実績の差異を見ながら販売戦略の軌道修正をしなければなりません。

しかし現状ではよく売れている”売れ筋商品”の分析にとどまっているケースが多いため、全体の20%の商品からしか利益を生み出せていないという結果になっているわけです。

SKU(ストック・キーピング・ユニット/品目)数が何万・何十万という規模になってくると、全商品を対象としたデータ分析を行うのは物理的に困難ですので、一部のよく売れている商品の分析にしか手が回らないという実情があります。

これは別の見方をするとある意味、博打のようなビジネスになっていると言えるかもしれません。

計画に対する軌道修正がなされていないというのは、抱えた在庫を上手に利益に変えるという発想が乏しく、抱えた在庫の中でどれが売れるか/売れないかという、当たり外れだけを見ているに等しいからです。