どのようにして「スピンの幽霊」を捕らえたのか?

鍵となったのはナノグラフェン分子と呼ばれる特殊な分子です。

ナノグラフェンとは、炭素原子が蜂の巣状につながったグラフェンという物質を、ナノメートルサイズに切り出したものです。

このナノグラフェンはその形状によって様々な磁気的・電子的な性質を示します。

研究で用いられた「オリンピセン」という分子は、5つのベンゼン環が環状につながった構造をしていて、オリンピックの五輪マークを連想させる形状をしています。

このオリンピセンは1つの電子が対になっていない「非対電子スピン(S=1/2)」を持つ磁性分子で、スピノンを生み出す理論モデルに理想的な特徴を備えていました。

研究者たちはまず、このオリンピセンを1つ1つ丁寧に結びつけることで、人工的な「スピンの鎖」を作り上げました。

オリンピセン同士をまるでレゴブロックのようにつなげて並べていくと、それぞれのオリンピセンが持つ小さなスピン同士が互いに影響し合うことで、理論上予測されていたスピノンが出現する構造(1次元の反強磁性スピン鎖:ハイゼンベルク鎖)が作り出されます。

さらに研究者たちは、この鎖を長さの異なるいくつものバリエーション(5個や7個、最長では50個のスピン)で用意し詳細に観測しました。

そのために使われたのは、「走査型トンネル顕微鏡(STM)」という特殊な顕微鏡です。

走査型トンネル顕微鏡は非常に鋭い針先を物質に近づけ、わずかな電圧をかけて電流が流れる様子を調べることで、物質のミクロな性質を探ることができます。

研究チームはこの走査型トンネル顕微鏡を使ってオリンピセン鎖の一つひとつにごく小さな電圧を与え鎖の各位置における電流の強さを非常に精密にマッピングしました。

すると特に「奇数個のスピンを持つ鎖」(5個や7個など)では、電流の強さが交互に強弱の山谷パターンを描いていることが確認されました。