設計や安全審査において、圧力容器と格納容器双方のエネルギーや物質の移行状況から各々の圧力や温度の変化を解析する場合には、MAAP(Modular Accident Analysis Program)コードを多用しています。

公開されている安全審査時の説明資料によると、このコードでは主蒸気逃がし安全弁を経由して格納容器側に流出する蒸気の流量を、設計値に基づき臨界流として原子炉の圧力に比例した質量流量を計算して解析しています。

しかし上述したように、主蒸気逃がし安全弁の下流側にあたる格納容器の圧力が高くなり原子炉の圧力に近づくと、計算の前提としている臨界流モデルそのものが本来適用できなくなります。

水蒸気の場合、流動様式が切り替わるポイントは水蒸気の比熱比から導出される「臨界圧力比」によって算出できます。水蒸気(比熱比 1.33)の場合の臨界圧力比は0.54となります。この臨界圧力比を元に、大気圧を0.1013MPaとして日本の事故対処手順で考えられる最も高い格納容器圧力0.854MPa [gage]に対応して流動様式が変化する上流側(原子炉がわ)の圧力を求めると下の式のようになります。

(0.854+0.1013)/ 0.54 – 0.1013 = 1.668 MPa[gage]

つまり原子炉圧力が1.668MPa[gage]付近よりも低い領域で亜音速流に変化し、原子炉の減圧速度が急速に低下し炉圧が下がりにくくなります。

この亜音速流の領域で臨界流を前提とした吹き出し流量を見積もっていると過大なものとなってしまいますので、解析の上ではスムースに減圧できると思っていても、実現象では原子炉の減圧が思うように進まない事態となります。

特に原子炉の崩壊熱が大きい時には、流動様式が変化した途端、急激に低下した吹き出し流量と崩壊熱によって蒸発してくる蒸気量が均衡してしまいますので、開放弁数を追加しても均衡している圧力以下には原子炉の圧力が下がらなくなります。こうなると原子炉の圧力は低下しないまま原子炉の水位はどんどん下がる一方で低圧の注水系では注水ができない時間が続くという袋小路に入ってしまいます。

  1. 低圧注水系に求められる能力と実証による機能確認