インドのデジタル市場は、AI技術を駆使した革新的なサービスで急速に進化している。Nasscomとボストンコンサルティング(BCG)社が共同で発表したレポートによれば、インドのAI市場はCAGR25~35%の成長が予測され、2027年までに170億米ドルに達するとされている。
AI技術の進展にともない、その活用は消費者の身近なサービスにまで広がっている。今回は、買い物体験を一層便利で豊かなものにする3つのAI機能を、インド在住の筆者の感想とインド人ユーザへのインタビュー結果を交えつつ、紹介する。
①ファッションEC「Myntra」のパーソナルアシスタント機能「Mystylist」
Myntraは2007年設立のバンガロールに本社を置く企業で、インド最大のファッションEC(ネットショップ)を運営している。日本でいうところの「ZOZOTOWN」のような位置付けと言っても良いだろう。
MyntraはいくつかAIを活用した機能を提供しているが、ここでは、2023年5月18日にリリースされたパーソナルスタイルアシスタント機能「My Stylist」を取り上げる。「My Stylist」は、一つの服のみではなく、「コーディネート」のレコメンドをしてくれる機能だ。
いくつかの切り口でコーディネートを紹介してくれる機能なのだが、そのうち筆者が面白いと感じた「過去のMyntraでの購入品起点での」コーディネート提案機能がある。それは「追加でこれを買うと、過去に買った商品と合わせてコーディネートが完成するよ」という形で商品を提示してくれる機能である。
左上の「ALREADY BOUGHT」と緑色のラベルがついているものが、自分が過去に買った商品で、それ以外の3マスにあるものが「買った商品に合うもの」としてレコメンドされている商品だ。UIも直感的であり、あまり思考せず楽しく見ていけると筆者が感じた機能だが、インドのユーザへのインタビューからも、服やコーディネートの選択肢に触れる新たな切り口として楽しく閲覧されていることがわかった。
週1-2回程度Myntraを見ているというバンガロール在住のAさん(27歳・女性)は以下のように語る。
いつも「購入履歴からのレコメンド」を見ます。特に服にあうアクセサリー、バッグや小物を見ています。
(中略)コーディネートを考えるのにも役に立ちますし。自分が持っているもので近いものがあれば、(買わずに)それを使えば良いと思っています。
新たに購入する服を見つけるだけではなく、ざっとコーディネートを“Look Book的”に見て、手持ちのものと合わせたコーディネートの参考にするというユーザは他にも何人か見られた。
また、ユーザの発言や使い方からは、全面的にコーディネートや購入品の参考にするというより、好きなもの・良いと思うものを“つまみ食い的”に見ている様子がうかがえた。
Bさん(25歳・男性)はこう語る。
時計はあまり変えないですし、靴はオフラインで買うので、時計と靴のレコメンドは自分は要らないです。でもズボンのレコメンドは役にたっています。(中略)
全部のレコメンドが素敵というわけではありません。いくつかはいまいちですが、それでも自分にとっては参考になるので良いです。
ファッションはそもそも「正解」があるものではなく、「好みに合うかどうか」という要素が大きいものだ。提案された商品を見ていくなかで、全てのレコメンドを良いと感じられなくても「ある程度良さそうなものがある」ということであれば見る理由になる。
現時点でこの機能は「現在持っている服を用いたコーディネート」という切り口で服を選ぶことができる点で新規性があるため、ユーザに楽しく使われる機能になっているようだ。
Myntraの2024年3月の公式発表によると、GMV(流通取引総額)の成長率は市場の2倍近くとなり、また月間アクティブユーザー数(MAU)は2021年の4,500万人から2023年末には6,000万人に増加しているという。最近は特にZ世代向けの施策に注力しており、今後も伸びが期待されている。