実際、BEVsを使用する際のCO2排出量は、その電源がどの程度の「CO2強度」を持つかで変わる。CO2強度は、むろん石炭火力なら最も大きく、風力・水力など再エネ系なら小さい(ただしゼロではない)。バッテリー製造に関しても、資源採掘法や加工方法、製造工程などによってLCAの見積もり結果は異なる。

従って数多くの研究結果があるが、まとめると、バッテリー製造におけるCO2排出量は、61〜106kg-CO2/kWh(バッテリー出力1kWh当り、製造工程で61〜106kgのCO2が排出される、の意味)の範囲にある。

しかしながら、世界の70%以上を占める中国製の場合は、この値が125kg-CO2/kWhになる。従って、60kWhのバッテリーを積むBEVsは、走る前のバッテリ−製造だけで7.5tのCO2を出している(125kg/kWh×60kWh=7500kg)。

※ 筆者注:前稿で紹介したをテスラのSタイプBEVのバッテリーは100kWhなので、12.5t CO2になる。)

英国では(電源のCO2強度が低いので)、小型BEVsのCO2排出量はICEVsより少ないだろうが、ゼロではない。重機や長距離輸送用などバッテリーサイズが大きい機種では、この値が大きくなることは自明である。

もう一つ、バッテリー製造用の資源採掘で重要なのは、人体の健康への影響(HTP:human toxicity potential)であり、水や生態系への毒性が評価される。ある研究結果では、BEVs用バッテリー製造において、排出される環境汚染物質のため、HTPがICEVsの場合より3〜5倍悪いとなっている。つまり、BEVsの環境影響は、バッテリー用資源の採掘国にまで輸出されることになる(例えば、コバルトを産するコンゴ共和国やリチウムを産するチリなど)。

また、鉱物資源を採掘する際には、目的資源以外の土砂や不要鉱石などが必ず出る。これを表す指標として「エコリュックサック(Ecological Rucksack)」の概念がある。例えば1トンの銅を得るには鉱石・土砂などの自然資源500トンを移動する必要があり、この場合のエコリュックサック値は500と表される。この値はもちろん目的鉱物の含有率で変わり、銅なら500で済むが、銀では7500、金や白金ともなると35万にも達する。

本論文では、バッテリー全体としてこの値を500としている。そして一例として日産リーフを挙げ、40kWh、300kgのバッテリーを積んでいるので、150tの土砂や鉱石を移動させたことに相当するとしている(これまで見てきたように、40kWhのバッテリーなど、まだ可愛いものであるが)。

これらの事項は現時点ではほぼ無視されているが、今後バッテリー製造量を100倍も増やさなければならないとすると、無視できない問題になると著者は指摘する。当然である。

3.2. インフラ及び物資の必要量

英国では、ガレージを有する車は22%しかない。その他は屋外駐車になるから、BEVsの場合は駐車場所の近くに充電ポイントが必要で、その数は200万箇所以上になると言う。2030年までにそれらを設置する場合、英国では80〜180億ポンド(160円/ポンドとして1兆2800億円〜2兆8800億円)かかるとされる。

また、BEVsは一般に高価である。一番安い日産リーフでも英国では2万9千ポンドする。同サイズの日産ミクラ(と言う名のICEVがあるらしい)は1万4千ポンド(約半額)である。最近の研究でトヨタは最も楽天的なシナリオでも、2030年までにBEVsをICEVsと同じ値段で売るのは困難だと結論しているらしい。実際のところ、バッテリー需要量が増えてその価格が上昇すると、BEVsの価格を下げるのはさらに難しくなる。

LCA的見積もりによれば、日産リーフ(BEV)は、英国ではICEVsより30%ほど温室効果ガス排出量が少ない。しかし一般のドライバーには目に見えては分からない。従って現状、平均的な消費者にとってBEVsは特に魅力的ではない。燃料価格が高くなれば、BEVsの総コスト(購入時+使用時)はICEVsより低くなるとの議論もあるが、それはBEVsを走らす電気代が変わらないとした場合であって、燃料価格が上がる時には電気代も上がるのが通例である。

先にも述べたように、英国には約3600万台のLDVsがあり、一方2021年末現在のBEVsは36万台(=1%)に過ぎない。これを(あり得ない話だが)2030年までに1000万台に増やすとする(LDVsの28%になる)。この中の10%(100万台)が仕事の終わりの夕方に充電するとしてみよう。