大気は地球を包む布団や温室のような役割を果たす。なお、石炭や石油などの化石燃料を燃焼した場合には、昼間でも夜間でも、大気分子は放出される熱エネルギーを受け取って、並進エネルギーが増えて大気の温度は上がる。

CO2の振動エネルギーは大気の温度を上げるのか? 

大気に含まれるCO2が赤外線を吸収して、CO2の振動エネルギーが増えたとしよう。しかし、固体の粒子間の振動エネルギーと異なり、気体分子の振動エネルギーは分子内のエネルギーであって並進エネルギーではないので、温度には反映されない。

赤外線の吸収によって大気の温度が上がると考えるためには、分子間の衝突によって、わずか0.04%のCO2の振動エネルギーが、その2500倍ものすべての大気分子の並進エネルギーに変換される必要があるが、これはほとんど不可能である。

逆に、大気分子の並進エネルギーは赤外線を吸収しないCO2の振動エネルギーに変換される※)。この場合には、大気分子の並進エネルギーが減るので大気の温度は下がる。なお、赤外線を吸収したCO2が赤外線を再放射すると、大気分子の並進エネルギーは変わらないので、大気の温度は変わらない。

大気中のどのくらいのCO2が赤外線を吸収しないのか? 

CO2の赤外線吸収のスペクトルのシグナル強度は、光源の赤外線の量と試料の長さに依存する。実験室では大量の赤外線を放射する光源を用いるので、10cmの長さの試料でもスペクトルを観測できる。

一方、地表から10cmの位置で地表から放射される赤外線を光源として用いると、赤外線の量が少なすぎてほとんどのCO2は赤外線を吸収しないので、スペクトルを観測できない。

もしも大気の上空(100km)から地表を観測すれば、試料の長さがとても長くなるので、ほとんどのCO2が赤外線を吸収しなくても、スペクトルを観測できる。つまり、大気に含まれるほとんどのCO2は赤外線を吸収せずに、大気分子の並進エネルギーを受け取る役割を果たす。