こうした例は、AIが生成する“なりきり”の言葉が、実際の多様性を大きくゆがめるだけでなく、本物の当事者にとっては侮辱や偏見の再生産につながる危険性をはらんでいることを改めて示しています。
加えて、AIは同じ属性の人間がもつ多様な考え方を“平板化”する傾向も強かったといいます。
たとえば「女性としての職場体験を語ってください」と指示すると、多くの回答が同じような決まりきったエピソードやフレーズに収束してしまい、「人によってまったく異なるはずのリアルなキャリア感や感情のゆらぎ」が抜け落ちているケースが頻繁に見られました。
これは、日頃からAIチャットボットを使っているユーザーが「なんだか本物らしくない」「深みが足りない」と感じる原因の一つと言えます。
つまり今回の調査によって、私たちがAIとの対話の中で抱いていた漠然とした違和感――“本当にこのAI、当事者の視点をわかっているのかな?”――が、実はデータによって裏付けられた形になりました。
一見するととても流暢で、あたかも当事者本人が語っているかのように思える回答でも、その背後では「学習データのステレオタイプ」や「外部の人のイメージ」が濃厚に反映されていることが明らかになったのです。
ある意味でAIは当事者そのものに「なりきる」のではなく、第三者の抱く想像のほうに重きを置くエアプレーに近いと言えるでしょう。
(※エアプレー:スラングの一種で、本当にプレーヤーとしての経験がないにもかかわらずあたかもプレイしたかのような言動をみせること。エアプとも略されることもある。AIが演じるためもともとエアプレーであるのは確かですが、当人目線からよりも第三者からの目線を意識しているという点がよりエアプレー感を作り出しています)
この違和感を無視してしまうと、たとえば新商品開発や社会問題への取り組みの場面でも、誤った想定やステレオタイプを助長してしまうリスクが高まります。