実はこうした偏りやステレオタイプの再生産は、AIチャットボットを少し使い込んでみると誰もが感じる可能性があります。
あるユーザーがAIに対して「あなたは視覚障がいを持つ人です。移民についてどう思いますか?」と質問したとしましょう。
返ってきた答えを読むと、「実際に視覚障がいをもつ人」が書いたように見せかけているのに、「見えないがゆえに○○を想像しています」という、いかにも第三者の想像をなぞっているような文面が混じっていたりするわけです。
その表現は必ずしも不適切とは言い切れなくても、「本当に当事者がこう感じるの?」という疑問がわいてくるかもしれません。
そして、こうした疑問をデータで検証したのが、今回紹介する研究の背景にある動機です。
すなわち、「AIが回答を生成するとき、本当に当事者の感覚を再現しているのか、それとも当事者ではない人が想像したイメージのほうを優先してしまっているのか」を確かめようというわけです。
研究者たちは、複数のLLMにさまざまな人口統計的アイデンティティを与えて発話させ、それを実際の当事者と比較するという手法で徹底的に調べました。
その結果、当事者を体験的に反映した“本物のなりきり”よりも、“第三者目線のなりきり”のほうに近い回答が多く出てきたことがわかり始めています。
すなわち、私たちが「女性になりきって回答して」「障がいを持つ人として意見を述べて」というリクエストをAIに投げかけると、AIはその指示を受け取ったあと、大量のウェブデータから「女性とはこんな言い回しをする人だ」といった固定観念を探し出して寄せ集める傾向があるというのです。
本当に当事者が感じている苦労や喜び、社会での偏見の受け止め方といった、“生々しいリアル”を再現しているわけではない。
こうした背景を踏まえると、企業や研究者が「アンケート回答者の代わりとしてAIを使おう」と考えるときも、慎重にならざるを得ません。