上述のように、高い格納容器圧力下で原子炉を減圧して行く過程の途中には、物理現象として原子炉の減圧速度が緩慢となる切り替わりポイントがありますので、低圧の注水系は、吹き出し蒸気流れが亜音速流となり崩壊熱により湧き出てくる蒸気流量とバランスしてしまう前に所定の注水流量(崩壊熱相当の注水流量)が出せるような性能が必要です。

プラント毎に値は異なりますが、日本が独自に開発して来ている事故対処手順では格納容器圧力を0.620~0.854MPa [gage]程度まで上昇させる可能性がありますので、低圧注水系はそれに応じて1.233~1.668MPa [gage]程度の原子炉圧力で崩壊熱相当の注水流量が出せる性能を有している必要があります。

このように用意している低圧注水設備が所定の性能を発揮できる範囲が、流動様式の変化するポイントをカバーできているかを実際に確認しておく必要があります。

確認は、原子炉を起動しなくとも原子炉内の水を再循環させるポンプを連続して運転することで、ポンプからの入熱によって原子炉の水温上昇、昇圧が可能ですので、そこから主蒸気逃がし安全弁作動時の原子炉圧力の低下カーブを採取することで可能です。

採取したカーブ上で流動様式が変化する原子炉圧力と格納容器圧力との関係を把握した上で、現有の低圧注水系でカバーできる範囲に収まっているかを原子炉起動前に実物により確認しておく必要があります。

このまま事故の核心ともいえる重要な機能の実証的確認を行わず、解析コードやそれに基づく許可処分を過信し続けていると2号炉3号炉の失敗を繰り返すこととなります。

日本のBWRが、将来にわたってエネルギー供給の柱の一つとしての役割を担い、国民の信頼を得てゆくためには、このような実証的プロセスを踏んで技術を積み重ねてゆく着実な歩みが必要です。

井伊 厳四郎 電力会社に30年以上勤務。原子力発電所の運転、保守、改造工事、プラント設計に従事。原子炉主任技術者資格保有。