隣の恒星や銀河団の大きさ

オリオン腕は主要な2本の腕の支流となっています
オリオン腕は主要な2本の腕の支流となっています / Credit:Wikipedia

ここからは距離がいっきにインフレして、光が1年間に進む距離「光年」や1パーセク(3.26光年)が基準になります。

太陽系から最も近いアルファ・ケンタウリまでの距離はおおよそ4.2光年(1.3パーセク)と言われています。

ざっとまとめると「1光年=27万AU=40.2兆km=0.306601パーセク」となります。

また太陽系が属するオリオン腕の長さはおよそ1万光年であり、天の川銀河系の直径は約15万光年となっています。

天の川銀河とアンドロメダ銀河は局所銀河団の2大銀河です
天の川銀河とアンドロメダ銀河は局所銀河団の2大銀河です / Credit:Wikimedia

またさらに視野を拡大すると、天の川銀河団とアンドロメダ銀河団という2つの大きな銀河の塊がみえてきます。

この2つの銀河団はダンベルのように2つがセットとなって局所銀河群(ローカルグループ)と呼ばれるより大きなグループを形成しています。

このローカルグループの直径はおよそ326万光年(3メガパーセク)となっています。

天の川銀河の属する局所銀河団も点のようなサイズになってしまいます
天の川銀河の属する局所銀河団も点のようなサイズになってしまいます / Credit:Wikimedia

またローカルグループはおとめ座銀河団は1500万光年(4.6メガパーセク)の一部であり、さらにおとめ座銀河団はラニアケア超銀河団(右の黄色い部分)の一部となっています。

ラニアケア超銀河団の直径は5億2000万光年(153メガパーセク)と推定されています。

このあたりから観測可能な宇宙の限界がみえはじめます
このあたりから観測可能な宇宙の限界がみえはじめます / Credit:Wikipedia

そしてラニアケア超銀河団は宇宙の大規模構造を形成する網の1本「ヘラクレス座・かんむり座グレートウォール」の一部となっています。

この「ヘラクレス座・かんむり座グレートウォール」の長さはおよそ100億光年となっており、観測可能な宇宙の10.7%の長さに達していると考えられます。

100億光年の長さを持つ「ヘラクレス座・かんむり座グレートウォール」が10.7%に過ぎないとすれば、観測可能な宇宙の大きさはその9倍以上大きくなければなりません。

観測可能な宇宙の直径と全宇宙の直径

観測可能な宇宙の直径は930億光年

地球の大きさからはじめて、ヘラクレス座・かんむり座グレートウォールに達したことではじめて観測可能な宇宙の一部までみえてきました。

観測可能な宇宙の直径は約930億光年と考えられており、地球からは、その半分となる半径465億光年先に、その淵があると考えられています(参考文献※2)。

たとえば、現在観測できる最も遠方にあると考えられる、宇宙マイクロ波背景放射はビッグバンから37万9000年後に発せられた光が、465億光年よりわずかに短い、およそ460億光年先の空間から届いたと考えられています(参考文献※4)。

「約137億年前に発せられた光が460億光年離れた地球に届く」というと、光速度限界の観点からは奇妙に聞こえるでしょう。

アインシュタインの特殊相対性理論によれば、どんな物体も光の速度を超えることはないとされているからです。

ただこの理論は、宇宙が平らな(曲率がない)時空から構成されている場合に限った話であり、実際の宇宙は膨張し続けています。

つまり「宇宙の年齢が137億だから、宇宙の半径は137億光年だ」という考え方は、膨張しない宇宙で考えた場合の話なのです。

そのため光が放出された「時間」から光が届くまで進まなければならない「距離」を算出するには、宇宙の膨張率を考慮しなければなりません。

この膨張率が、137億年前(時間)と465億光年(距離)のズレの要因となっています。

ただこの半径460億光年という数値は、ビッグバン以降の宇宙の晴れ上がりと光を基準にしています。

宇宙の晴れ上がり前は光が真っ直ぐ進むことができないため、それより前に存在した光があったとしても観測可能にならないからです。

一方、光の限界を超える方法として重力波が期待されています。

宇宙の始まりについて私たちの多くは「ビッグバンによって超高密度の「点」が爆発的に膨張して宇宙になった」と考えられています。

実際、昔の子供向け科学雑誌にはしばしば、そのように記載されています。

しかし現在、ビッグバンは宇宙の始まりとは考えられていません。

ビッグバンは宇宙の始まりではない
ビッグバンは宇宙の始まりではない / Credit:早稲田大学、宇宙の始まりの頃の様子を、重力波を使って明らかに

現在の宇宙論では、まず超高密度の「点」であった宇宙の素がインフレーションによって急激に膨張して一時的に冷え、その後再加熱されたと考えられています。

そして幼い頃の私たちがビッグバンだと思っていたのは、この再加熱現象であることが明らかになりました。

私たちの宇宙は誕生した直後から

「超高温超高密度の点」➔インフレーションで急膨張して冷却➔再加熱(ビッグバン)➔素粒子の誕生➔ヒッグス粒子の性質変化➔原子の誕生➔星々の誕生➔現在の宇宙

と目まぐるしく様相が変化していったのです。

全ての力から重力が分離したのは宇宙誕生から10のマイナス43乗秒過ぎであると考えられており、ビッグバンより以前のインフレーション時代の宇宙の様子を探れるかもしれないからです(参考文献※3)。

現在、世界各国で重力波の測定プロジェクトが行われています。

もしかしたら近い将来、観測可能な宇宙の定義が光を基準にしたものから、重力を基準にしたものへ変わるかもしれません。

観測可能な宇宙の向こうにある全宇宙の直径

画像
Credit:Canva . 川勝康弘

観測可能な宇宙の外側を含む全宇宙の大きさを計算するには、ビッグバンよりも前に起きたインフレーションによる膨張率も考慮しなければなりません。

しかし予測結果はまちまちであり、一般には1.5×10 34億光年とする意見がみられる一方で、もっと大きな数値を主張する人々も存在します。

たとえば過去に行われた他の研究では、インフレーションの膨張率はほぼ無限に近い可能性があり、宇宙の直径は10の10乗の10乗の123乗という指数タワーのスケールによって、はじめて表現できると推定されています(※参考文献1)。

このような巨大数の前では、全ての単位は無意味になります。

元となる数字が1kmと1光年では計算結果が40兆倍以上違いますが、指数タワーという異常な数の前では、元の数値の何倍であるかは、物理的に何の価値も生まなくなってしまうからです。

単位というのは、物理的な概念を伴ったものであり、単位が結果に影響を及ぼせないレベルの指数タワーの前には無力です。

実際、物理学者のなかには全宇宙の大きさは文字通り無限であると述べている人もいます。

まさに宇宙の広さは計り知れないと言えるでしょう。

参考文献

※1 レオナルド・サスキンド . 宇宙のランドスケープ 宇宙の謎にひも理論が答えを出す . 2006 . 日経BP . ISBN 978-4822282523

※2 Itzhak Bars; John Terning . Extra Dimensions in Space and Time. 2009 . Springer. ISBN 978-0387776378. Retrieved 2011-05-01.

※3 秋元祐希 . 宇宙の歴史と宇宙観測 . 2019 . 技術評論社 . ISBN 978-297-10413-9

※4 Guth, Alan H. The inflationary universe: the quest for a new theory of cosmic origins. (1997). Basic Books. ISBN 978-0201328400.

ライター

川勝康弘: ナゾロジー副編集長。 大学で研究生活を送ること10年と少し。 小説家としての活動履歴あり。 専門は生物学ですが、量子力学・社会学・医学・薬学なども担当します。 日々の記事作成は可能な限り、一次資料たる論文を元にするよう心がけています。 夢は最新科学をまとめて小学生用に本にすること。

編集者

海沼 賢: ナゾロジーのディレクションを担当。大学では電気電子工学、大学院では知識科学を専攻。科学進歩と共に分断されがちな分野間交流の場、一般の人々が科学知識とふれあう場の創出を目指しています。