そのため光子の密度がある段階を超えると、光子の存在確率が重なり合って、1つの光子「超光子」のように振る舞うことが可能になります。

また波として解釈した場合、重なりはじめた光子の波はどんどん不鮮明になって、最終的には区別ができなくなっていきました。

小箱の中の光子たちが途中から、ほとんど圧力をかけることなしに圧縮できたのも、複数の光子がまとまっていくという、分子や原子にはみられない現象が起きていたからです。

なお、圧縮にほとんど力がいならいボーナスタイムは、小箱の中の光子が完全に融合した状態(凝縮体)に達すると終了します。

逆を言えば、ボーナスタイムのときにかかる微弱な力は、光子が個から全にまとまるために必要な力に依存しているのです。

研究者たちはこの光子の機械的な性質を用いることで、超高感度の測定装置を開発できると述べています。

通常の重さの測定にはバネや感圧装置が使われていますが、光子による圧力変化は人類が作成できるどのバネよりも正確に質量の測定が可能になるからです。

測量技術は演算技術と同じく人類の科学力の基礎となるものです。

光子による質量測定は砂糖などの生活用品の測定には向きませんが、将来の科学発展には必要不可欠なものになるでしょう。

※この記事は2022年3月公開のものを再掲載しています。

全ての画像を見る

参考文献

Physicists create extremely compressible “gas of light”
https://www.uni-bonn.de/en/news/053-2022

元論文

Compressibility and the equation of state of an optical quantum gas in a box
https://www.science.org/doi/10.1126/science.abm2543

ライター

川勝康弘: ナゾロジー副編集長。 大学で研究生活を送ること10年と少し。 小説家としての活動履歴あり。 専門は生物学ですが、量子力学・社会学・医学・薬学なども担当します。 日々の記事作成は可能な限り、一次資料たる論文を元にするよう心がけています。 夢は最新科学をまとめて小学生用に本にすること。